Skocz do zawartości


Potwierdzono kwantowy efekt Zenona


  • Zaloguj się, aby dodać odpowiedź
Brak odpowiedzi do tego tematu

#1 Gość_critter☆

Gość_critter☆.
  • Tematów: 0

Napisano

*
Popularny

kwantowy-589cx205.jpg

fot. GeekWeek

Mechanika kwantowa przewiduje przedziwny efekt Zenona, który polega na tym, że ewolucja układu kwantowego jest spowalniana przez fakt jego częstych obserwacji, a gdyby te obserwacje były prowadzone non-stop to ewolucja ta całkowicie by ustała, zostałaby "zamrożona". A teraz udało się eksperymentalnie potwierdzić istnienie tego zjawiska.

 

Naukowcy z Laboratory of Atomic and Solid State Physics na Uniwersytecie Cornella przyglądali się miliardowi atomów rubidu schłodzonych w komorze próżniowej do temperatury ledwo przekraczającej zero bezwzględne i zawieszonych pomiędzy promieniami laserów.

 

Atomy utworzyły tam dość uporządkowaną sieć, ale ze względu na właściwości kwantowe (słynna zasada nieoznaczoności Heisenberga) zmieniały one swoje miejsca w tej sieci dość swobodnie wykorzystując efekt tunelowania kwantowego.

 

Zasada nieoznaczoności Heisenberga (lub zasada nieokreśloności) to reguła, która mówi, że istnieją takie pary wielkości, których nie da się jednocześnie zmierzyć z dowolną dokładnością. O wielkościach takich mówi się, że nie komutują. Akt pomiaru jednej wielkości wpływa na układ tak, że część informacji o drugiej wielkości jest tracona. Zasada nieoznaczoności nie wynika z niedoskonałości metod ani instrumentów pomiaru, lecz z samej natury rzeczywistości.

 

Ale eksperyment wykazał, że da się to tunelowanie zatrzymać wyłącznie poprzez obserwację całego układu - a zatem udało im się potwierdzić zaobserwowane już przez Alana Turinga zjawisko zwane efektem Zenona (nazwane tak od antycznego greckiego filozofa).

 

Zjawisko to właściwie opisane zostało w latach 70 przez E. C. George'a Sudarsahana i Baidyanatha Misrę z Univeristy of Texas w Austin, którzy wskazali, że jeśli powtarzać będziemy pomiar/obserwację kwantowego układu z wystarczająco dużą częstotliwością to da się go niejako zamrozić.

 

Efekt ten był już eksperymentalnie potwierdzony, ale tylko dla spinów cząstek subatomowych, a teraz zaobserwowano go po raz pierwszy w przypadku atomów. Dodatkowo w tym przypadku zaobserwowano inny efekt - naukowcy byli w stanie płynnie przechodzić między stanem kwantowym, a klasycznym - w którym atomy zachowywały się tak jak przewiduje to newtonowska fizyka.

 

 

Autor: Krzysiek Dzieliński

Źródło: GeekWeek

geekweek_logo.png


  • 8



Użytkownicy przeglądający ten temat: 1

0 użytkowników, 1 gości oraz 0 użytkowników anonimowych