Skocz do zawartości


Zdjęcie

Nanotechnologia


  • Zaloguj się, aby dodać odpowiedź
23 odpowiedzi w tym temacie

#16

Legalize.
  • Postów: 2723
  • Tematów: 123
  • Płeć:Mężczyzna
Reputacja ponadprzeciętna
Reputacja

Napisano

NANOWĘGIEL-CZY STANOWI ZAGROŻENIE?
Coraz częściej wykorzystuje się dziś nanoelementy z węgla. Znalazły zastosowanie przy budowie urządzeń mocniejszych i lżejszych od stali. Stanowią też składnik wielu tanich narzędzi używanych przez majsterkowiczów oraz domowego sprzętu sportowego.

Najnowsze analizy wskazują, że cząstki te mogą być niebezpieczne dla ludzkiego zdrowia. Nanotechnologia to dziedzina wytwarzania niezwykle małych elementów oraz urządzeń. Elementy mają wielkość od kilku do kilkuset nanometrów.

Nanotechnologie wykorzystuje się w medycynie, elektronice, technologiach materiałowych. Wprowadzono je też do monitorowaniu poziomu zanieczyszczeń, a walki z terroryzmem. Szczególnie popularny na tym polu stał się węgiel. Od grudnia 2001 r., gdy brytyjscy naukowcy z uniwersytetu w Cambridge wynaleźli tanią i prostą technologię otrzymywania nanoelementów z węgla, wykorzystanie tych drobin bardzo się rozpowszechniło. Te nanocząstki mają 25 do 30 nanometrów średnicy i znajdują szerokie technologiczne zastosowanie. 25 października 2005 r. zespół amerykańskich naukowców, kierowany przez prof. W. J. Starka, przedstawił wyniki badań nad wpływem nanocząstek na zdrowie ludzi. Okazuje sie, że nanocząstki od niedawna wykorzystywane w przemyśle, mogą być szkodliwe.

- Wpływ nanocząstek, drobinek o średnicy miliardowych części metra, na materię ożywioną, podzielił środowisko naukowe – wyjaśniał w oświadczeniu dla mediów prof. Stark. - Wraz z różnorodnością nanomateriałów, pojawia się różny stopień ewentualnego zagrożenia, polegającego na niezamierzonym wchłonięciu przez ludzkie komórki nanometrycznej wielkości drobinek. W ramach eksperymentów, naukowcy przeprowadzili serię doświadczeń, podczas których testowano próbki przemysłowo produkowanych nanomateriałów. Naukowcy zaobserwowali różnorodny, zależny od wielkości nanocząstki, sposób, w jaki dostają się one do wnętrza żywej komórki. Ustalono jednak, że

NANOPOJAZDY PRZYPOMNAJĄCE SAMOCHODY.

z wielką łatwością. Optymistyczny jest tylko fakt, że nanodrobinki zwykle nie osadzają się w jądrze komórkowym, gdzie są magazynowane i powielane geny, odpowiedzialne za procesy życiowe każdego organizmu. Cząstki gromadzą się w jednym miejscu komórki i są otaczane wewnętrzną błoną lipidową, co wskazuje na niezbyt wielkie zagrożenie rakotwórcze nanomateriałami. Problem w tym, że długofalowych skutków odkładania się takich cząsteczek w organizmie nie da się przewidzieć. Już w czerwcu 2005 r. zespół naukowców z Rice University opublikował wyniki badań nad wpływem na środowisko i żywe organizmy coraz częściej stosowanych fullerenów - węglowych nanokuleczek.

FULLERENY

to kuliste cząsteczki, utworzone z warstwy atomów węgla. Ich istnienie odkryto w 1985 r. Wcześniej znano tylko dwie postaci węgla - diament i grafit (sadza okazała się bardzo drobnokrystalicznym grafitem). Atomy węgla w fullerenie połączone są wiązaniami w sposób, który przypomina powierzchnię piłki futbolowej.
Dołączona grafika

Z kolei fullereny o wydłużonym kształcie są węglowymi nanorurkami. Te właśnie ogromnie wytrwłókna znajdują coraz to nowe zastosowanie w nanotechnologii, od konstrukcji z syntetyków po produkcję leków. Już dziś produkuje się z ich udziałem domowy sprzęt sportowy i tanie narzędzia powszechnego użytku. Do niedawna jednak nie było wiadomo, co dzieje się z fullerenami, gdy już produkty z nich wykonane wychodzą z fabryki.W warunkach laboratoryjnych fullereny nie są rozpuszczalne w wodzie, badania amerykańskich naukowców wykazały jednak, że takie nanocząstki wpuszczone do rzeki czy morza tworzą większe skupiska, tzw. agregaty, które nazwano nano-C60. Powstają z nich silnie bakteriobójcze roztwory.

ANTYBAKTERYJNE WŁAŚCIWOŚCI

fullerenów mogą oczywiście znaleźć pożyteczne dla człowieka zastosowanie. Z drugiej strony mogą też spowodować niebezpieczne skutki, ponieważ wiele mikroorganizmów jest pożytecznych, a nawet niezbędnych w ekosystemach. Nie wiadomo też, czy nanocząsteczki węgla, osadzające się w ludzkich komórkach, nie staną się dla nich niebezpieczne. Możliwości wykorzystania węgla w nanoskali pojawia się coraz więcej. 10 listopada 2005 r. kierowany przez prof. Philipa Kima międzynarodowy zespół badawczy naukowców z Pohang University of Science and Technology w Korei i amerykańskich ekspertów z Brookhaven National Laboratory oraz Columbia University, przedstawił technologię umożliwiającą tworzenie wielkich struktur z węglowych nanorurek. Jest to tania metoda katalitycznego wytwarzania jedno- i wielościennych nanorurek węglowych, które mają średnicę kilku nanometrów, ale długość nawet kilkunastu cm. Posiadają one bardzo wysokie możliwości w zakresie przewodzenie prądu elektrycznego i wytrzymałości mechanicznej. Znajduje to szerokie zastosowanie w tworzeniu elementów konstrukcyjnych i pozwala budować jeszcze wyższej jakości urządzenia elektroniczne. Już tydzień przed publikacją wyników prac zespołu prof. Kima, naukowcy z National Insitute of Standards and Technology oraz University of Pennsylvania przedstawili nowej jakości ognioodporne tworzywa. Są to powszechnie stosowane polimery, których właściwości uległy zmianie po dodaniu do nich węglowych nanorurek. Inną nanotechnologię z udziałem węgla zaprezentowano pod koniec pażdziernika 2005 r. W laboratoriach należącego do światowej nanotechnologicznej czołówki Rice University, zespół badawczy prof. J. M. Toura skonstruował zdalnie sterowane

NANOPOJAZDY PRZYPOMNAJĄCE SAMOCHODY.

W badaniach zastosowano zaawansowaną technologicznie metodę elektronowej obserwacji mikroskopowej (Tunelowy Mikroskop Skaningowy – STM). Nanopojazdy swoją budową przypominają zwyczajne samochody używane na drogach, tyle że mają 2 nanometry długości i 3 szerokości. Każdy pojazd wyposażony jest w 4 fullerenowe koła z osiami w postaci jednostek acetylenowych, umożliwiających obrót fullerenowych kół. Z kolei podwozie wykonano z aromatycznych pochodnych acetylenu (alkynów). Do poruszania nanowozów zastosowano oddziaływanie termiczne. Gdy podniesiono temperaturę podłoża, samochodziki pędziły tak szybko, że mikroskop elektronowy nie był w stanie oddać płynnego obrazu ich ruchu. Według raportu ekspertów z Rice University, konieczne jest opracowanie przepisów bezpieczeństwa dotyczących przetwarzania i utylizacji fullerenów. Na wzmożenie prac badawczych nad wpływem nanocząstek na zdrowie człowieka wskazują też analizy zespołu prof. Starka.

Serwis NPN
  • 0

#17

count_maximus.
  • Postów: 38
  • Tematów: 1
Reputacja neutralna
Reputacja

Napisano

jesli wprowadziliby to w zycie to moze miec to spore konsekwencje. ludzie staliby sie mniej zalezni od Elit i rzadow.

jak to mniej wystarczy że jakiś mądrala z rz <wiem że uogólniam> dorwie się i zamontuje w takich nanorobotach operacje niszcz a następnie sprzęży to z wielkim czerwonym guzikiem :D a nanoroboty będą powszechnie używane np. do oczyszczania naszych ciał ze śmieci po chipsach :D i już niewolnicy jego woli aż do śmierci a co gorsza mógłby zmusić abyśmy naszym dzieciom to wszczepiali również władza absolutna i ot w najskuteczniejszym wydaniu
  • 0

#18

Kosmitka.
  • Postów: 9
  • Tematów: 3
Reputacja neutralna
Reputacja

Napisano

Przecztajcie sobie Felix Net i Nika i otalnie Mozliwa Katastrofa du

ariel: administracja poleca również lekturę słownika ortograficznego, dostępny jest on również w wersji on-line.
  • 0

#19

comandos 109.
  • Postów: 22
  • Tematów: 3
Reputacja neutralna
Reputacja

Napisano

Nanotechnologia - jestem pod wrazeniem, do czego umysł człowieka już doszedł :
Technologie

Nanotechnologia


Postać zbudowana z cząsteczek tlenku węgla osadzonych na powierzchni platyny
Ideę nanotechnologii czyli budowy mikroskopijnych urządzeń zwanych nanorobotami lub nanobotami jako pierwszy sformułował w 1959 roku Richard Feynman, laureat nagrody Nobla w dziedzinie fizyki, który stwierdził, że kiedy możliwe stanie się manipulowanie pojedynczym atomem, naukowcy będą w stanie uzyskać w drodze syntezy absolutnie wszystko.
Naukowcy pragną stworzyć nanoboty, których wielkość nie przekraczałoby milionowych części metra. Byłyby to podobne do cząsteczek białka, które już obecnie mogą być zaprogramowane przez specjalistów od inżynierii genetycznej do tego, by się zmieniać i poruszać. Pod kontrolą nanokomputerów, nanoboty mogłyby przechwytywać pewne molekuły i grupować je w pewne określone struktury (na rysunku obok). W ten sposób z szeregu różnych materiałów powstawałyby zupełnie nowe obiekty. Przy użyciu atomów węgla nanoboty mogłyby, przynajmniej teoretycznie, zbudować niemalże każdą rzecz.
W 1981 roku w laboratorium badawczym IBM wynaleziono skaningowy mikroskop tunelowy (SMT), który służy do badania powierzchni ciał w skali atomowej. Kilka lat później naukowcy pracujący dla IBM wykorzystali STM do ułożenia 35 atomów ksenonu tak, by utworzyły one logo IBM. Niestety wszystko to odbywało się w bardzo niskich temperaturach bliskich zera bezwzględnego. Dzięki temu doświadczeniu inni naukowcy zdali sobie sprawę, że możliwe stało się tworzenie nowych konfiguracji atomów. Ideą budowy mikroskopijnych maszyn interesuje się wiele koncernów przemysłowych i rządowych grup badawczych.


Skonstruowano tranzystory z pojedynczych cząsteczek chemicznych

Im mniejsze, tym lepsze - ta zasada obowiązuje w elektronice już dobre pół wieku.
W czerwcu 2002 roku dwie grupy badaczy niezależnie od siebie doniosły, że udało im się skonstruować tranzystory z pojedynczych cząsteczek związku chemicznego.
Tranzystor - mówiąc w wielkim uproszczeniu - to przełącznik. Na żądanie albo przepuszcza prąd w obwodzie, albo go blokuje. Może też go odpowiednio wzmacniać. Mózgi współczesnych komputerów - mikroprocesory - to nic innego jak miliony tranzystorów upakowanych na krzemowych płytkach. Naukowcom i inżynierom zależy na tym, by upakować ich jak najwięcej w jednym układzie elektronicznym takim jak mikroprocesor z komputera. Im gęściej upakowane są tranzystory w mikroprocesorze, tym jest on sprawniejszy, potrzebuje mniej energii, no i co ostatnio najważniejsze - szybciej działa. Granicą miniaturyzacji wydaje się właśnie tranzystor z pojedynczej cząsteczki związku chemicznego.

Tranzystor z Cornell University: pojedyncze atomy kobaltu (granatowe) są utrzymywane w miejscu przez molekuły pirydyny (jasnoniebieskie), umocowane na zewnątrz atomy siarki (czerwone) łączą układ ze złotymi elektrodami.
Obie grupy naukowców jako podstawy swojej konstrukcji użyły złotego drutu o średnicy zaledwie 200 nanometrów (wielokrotnie cieńszego od ludzkiego włosa) ułożonego na podłożu z krzemu. Grupa z Cornell wybrała duży kompleksowy związek organiczny zawierający w środku atom kobaltu, grupa z Harvardu cząsteczkę z dwoma atomami wanadu połączonymi łańcuchami atomów węgla i azotu.
Czy to oznacza, że już za chwilę elektronicy porzucą badania nad krzemem i zwrócą się ku tranzystorom molekularnym?
Na razie nie ma o tym mowy bowiem krzemowe obwody elektroniczne mają kilka zalet, na razie niedostępnych elektronice molekularnej. Są wydajniejsze, szybsze i prostsze w produkcji, a co za tym idzie - o wiele tańsze. Nawet jeżeliby miało się okazać, że nanotranzystory nigdy nie staną się konkurencją dla krzemu przy konstruowaniu mikroprocesorów, to może znajdą inne zastosowania np. w czujnikach i nowoczesnych pojemnych pamięciach, które znajdą zastosowanie w przenośnych komputerach, dyktafonach i aparatach cyfrowych, a nawet kamerach. Poza tym jest to szalenie istotne dla zrozumienia podstawowych procesów chemicznych i biologicznych.


Nanorurki węglowe

Od momentu odkryciu fulerenów, czyli molekuł składających się z 60 (lub więcej) atomów węgla, liczne laboratoria naukowe no świecie zaczęły zajmować się wieloatomowymi formami węglowych molekuł. W trakcie eksperymentów stwierdzono, że występują one również w postaci rurek o długości znacznie przekraczającej ich średnicę. Nazwano je nanorurkami.
Węglowe nanorurki maja średnicę około 1,5 nanometra, a więc 10000 razy mniejsza od grubości ludzkiego włosa. Przypominają arkusz siatki drucianej z sześciokątnymi oczkami zwinięty w rurkę. W Ameryce działa firma badawczo - rozwojowa, która już oferuje do sprzedaży nadwyżki produkowanych w swoich laboratoriach fulerenów C-60, a także nonorurek węglowych.
W zależności od swojej struktury nanorurki mogą zachowywać się jak metal albo półprzewodnik. Ostatnie pomiary na uniwersytecie Maryland wykazały, że nanorurki są bardzo dobrymi półprzewodnikami. Tranzystory zbudowane z nich świetnie się spisują w temperaturze pokojowej. Według ekspertów węglowe nanorurki mają szansę wyprzeć krzem z układów scalonych w ciągu najbliższych dziesięciu lat. Trzeba jednak opracować nową technologię produkcji tego materiału ponieważ obecnie jest to proces powolny i kosztowny.
W 2005 roku udało się uzyskać przezroczysty i elastyczny węglowy tranzystor wykonany z nanorurek. Tego typu technologia może być wykorzystana do produkcji przezroczystych, aktywnych wyświetlaczy, jak również inteligentnych szyb. Stosowane mogą być one między innymi w samolotach bojowych oraz w motoryzacji.
Nanorurki są również niezwykle wytrzymałymi materiałami i maja dobre przewodnictwo cieplne. Te cechy spowodowały duże zainteresowanie nimi pod kątem możliwości wykorzystania w urządzeniach nanoelektronicznych i nanomechanicznych. Dzięki lepszemu i głębszemu zrozumieniu właściwości elektrycznych węglowych nanorurek i emitowania przez nie światło, można mieć nadzieję na przyśpieszenie tempa rozwoju nanooptoelektroniki.
O kolejnym zastosowaniu nanorurek poinformowało w październiku 2004 roku pismo "Applied Physics Letters". Udało się opracować antenę wykonaną z węglowych nanorurek, która wychwytuje światło widzialne w podobny sposób, co anteny odbierające fale radiowe. Takie anteny mogą znaleźć zastosowanie na przykład w telewizji optycznej lub przekształcaniu energii słonecznej w elektryczną. Sygnały radiowe i telewizyjne są odbierane przez anteny o wymiarach zbliżonych do długości stosowanych przy transmisji fal elektromagnetycznych. Dlatego anteny radiowe dla fal długich powinny być długie, telewizyjne - niewielkie, a w telefonach komórkowych - całkiem małe, natomiast dla światła widzialnego takich anten jeszcze do niedawna nie wymyślono. Gdy fala elektromagnetyczna pada na antenę, pobudza elektrony i powstają bardzo słabe prądy. To one właśnie niosą informację o dźwięku czy obrazie. Światło ma małą długość fali, wynoszącą od 400 nanometrów do 700 nanometrów, by mogły je odbierać anteny widzialne gołym okiem. Zespołowi Yang Wanga z Boston College udało się odebrać światło za pomocą anteny z mikroskopijnych nanorurek i otrzymać sygnał elektryczny. Dzięki temu będzie można stosować światło do transmisji programów telewizyjnych światłowodami lub opracować nowe ogniwa słoneczne.
Z odpowiednio upakowanych nanorurek węglowych zbudowane są opracowane ostatnio superpojemne kondensatory. Ta technologia może już w najbliższych pięciu latach zostać wykorzystana do produkcji bardzo wydajnych baterii. Potencjalna lista zastosowań nanorurkowych kondensatorów jest prawie nieograniczona: przemysł motoryzacyjny (samochody elektryczne i hybrydowe czyli spalinowo-elektryczne), przemysł kosmiczny, superpojemne akumulatory, przemysł elektroniczny i telekomunikacyjny (baterie telefonów komórkowych).
Ciekawe jakie jeszcze niespodziewane własności kryją nanorurki?


Najmniejsze źródło światła

W laboratoriach IBM stworzono najmniejsze źródło światła. Nowe źródło światło ma postać pojedynczej nanorurki węglowej o średnicy 1,4 nanometra (nanometr jest jednomiliardowa częścią metra, czyli jednomilionowa częścią milimetra) ułożone w konfiguracji trójelektrodowego tranzystora polowego. Podobnie jak w przypadku konwencjonalnego tranzystora polowego doprowadzenie niskiego napięcia do elektrody bramki tranzystora włącza przepływ prądu od jednego końca nonorurki do drugiego (od źródła do drenu tranzystora).
Naukowcom z IBM udało się opracować urządzenie jednocześnie wstrzykujące do pojedynczej nanorurki węglowej ładunki ujemne (elektrony) - od strony elektrody źródła, oraz ładunki dodatnie ("dziury") - od strony elektrody drenu. Kiedy elektrony i dziury spotykały się wewnątrz nanorurki, następowało ich zobojętnianie, czemu towarzyszyła emisja światła podczerwonego.
Ponieważ takie źródło światła jest w istocie tranzystorem, to emisję światła można włączać i wyłączać za pomocą napięcia doprowadzanego do elektrody bramki. Elektryczne sterowanie emisją światła zachodzącą w nanorurkach umożliwia prowadzenie subtelnych badań zjawisk fizyki optycznej, mających miejsce w tych unikalnych jednowymiarowych strukturach. Naukowcy IBM stwierdzili, że emitowane jest światło o długości fali 1,5 mikrometra, co ma duże znaczenie praktyczne, ponieważ w wielu optycznych systemach łączności światło o takiej właśnie długości fali jest powszechnie używane. Nanorurki o różnej średnicy mogą wytwarzać światło o innej długości fali, użyteczne w wielu zastosowaniach.
Opracowano na podstawie czasopisma "Młody Technik"
--------------------------------------------------------------------------------


Bardzo cienkie światłowody

Pismo "Nature" informuje o otrzymaniu supercienkich włókien. Powstały one dzięki współpracy naukowców z Harvard University oraz uniwersytetów Zheijang w Chinach i Tohoku w Japonii.
Mają średnicę zaledwie 50 nanometrów (miliardowych części metra). Długości fal światła widzialnego wynoszą od 380 (fiolet) do 780 (czerwień) nanometrów. Fala świetlna biegnie wzdłuż włókna, a nie odbija się wewnątrz niego jak w tradycyjnym światłowodzie. Włókna mają bardzo gładką powierzchnię (na poziomie atomowym) i równomierną grubość, dzięki czemu płynące nimi światło pozostaje spójne. Pozwolą przesłać więcej informacji, zajmując mniejszą przestrzeń. Słabiej również tłumią światło, będzie można się więc obejść bez wzmacniaczy, które dziś trzeba rozmieszczać co jakieś 50 km, żeby regenerowały osłabione sygnały w dalekozasięgowych szklanych przewodach. Naprawa i konserwacja takich wzmacniaczy to wielki kłopot, zwłaszcza jeśli położne są w trudno dostępnych miejscach, np. na dnie oceanu. Ponieważ nowe światłowody są niezwykle cienkie, można nimi łatwo manipulować np. skręcać.
Znajdą zastosowanie między innymi w urządzeniach medycznych, systemach laserowych, narzędziach komunikacyjnych czy czujnikach. Dzięki dalszej miniaturyzacji na przykład czujniki skażeń będą mogły dokładniej wykrywać wiele skażeń jednocześnie.
Współczesne włókna światłowodowe są zwykle robione ze szkła kwarcowego. Szklany rdzeń jest podgrzewany i powoli wydłużany, aż stanie się dostatecznie cienki. Trudno jednak w ten sposób "wyciągnąć" włókna do średnicy mniejszej niż kilka mikrometrów. Zespół z Harvard University najpierw wyciąga włókna tradycyjną, a potem owija je na podgrzewanej szafirowej igle, dzięki czemu udaje się jeszcze bardziej je wydłużyć.

--------------------------------------------------------------------------------


Komputer kwantowy

Nasze komputery są coraz mniejsze i coraz szybsze. Miniaturyzacja ,ma jednak granice, które wyznaczają zasady fizyki. Zmniejszanie powoduje w pewnym momencie, że pojawi się nowa jakość - istotny wpływ na przebieg zjawisk zaczną mieć efekty kwantowe. Są nowe pomysły aby zbudować komputer kwantowy. Byłby to komputer szybszy, ale nie dlatego, że jest jeszcze mniejszy lecz mógłby działać wielotorowo, wykonując szereg zadań jednocześnie. Możliwe jest to dzięki niezwykłym prawom rządzącym kwantowym światem, w którym jednocześnie mogą przebiegać całkowicie różne procesy.
Klasyczny bit (elementarna jednostka informacji) przyjmuje tylko jedną z dwóch wartości: zero albo jedynkę. W nowej teorii odpowiednikiem klasycznego bitu jest bit kwantowy, zwany qubitem. Dlatego też układ, który znajduje się w stanie kwantowym, jest swoistą kombinacją klasycznego zera i jedynki. Mówiąc w przybliżeniu, qubit może być trochę jedynką i trochę zerem jednocześnie! Komputer kwantowy może więc jednocześnie wykonać wiele rachunków równolegle.
Zespół z IBM po raz pierwszy zbudował prymitywny komputer kwantowy, którego cząsteczka znajduje się obok. Realizuje on algorytm Petera Shora rozkładający liczbę 15 na czynniki pierwsze. Każdy z pięciu atomów fluoru i obydwa atomy węgla 13C działają jako qubity. Programowanie odbywa się przy użyciu fal radiowych, odczytywanie wyników wymaga zastosowania techniki jądrowego rezonansu magnetycznego. Nie wiadomo czy prawdziwy komputer kwantowy kiedykolwiek zostanie zbudowany. Pierwszy krok został wykonany. Czekamy na dalsze wyniki badań.

[attachment=82:attachment]

[attachment=83:attachment]

[attachment=84:attachment]
  • 0

#20

Danki.
  • Postów: 360
  • Tematów: 6
  • Płeć:Mężczyzna
Reputacja ponadprzeciętna
Reputacja

Napisano

fajny artykuł ale nie podałeś źródła (chyba ze sam to napisałeś)
  • 0

#21

Tiamat.
  • Postów: 3048
  • Tematów: 29
  • Płeć:Mężczyzna
Reputacja ponadprzeciętna
Reputacja

Napisano

Temat polaczylem z istniejacym juz w dziale. Comandos takze prosze o zrodlo artykulu.
  • 0

#22

comandos 109.
  • Postów: 22
  • Tematów: 3
Reputacja neutralna
Reputacja

Napisano

panowie przepraszam, ale z powodu awarii kompa straciłem dojscie do owej strony. Jak znajde owe źródło zaraz podam - też mi na tym bardzo zależy. pozdrawiam dzieki za wyrozumiałosc
  • 0

#23

Nick.
  • Postów: 1527
  • Tematów: 777
  • Płeć:Mężczyzna
  • Artykułów: 2
Reputacja znakomita
Reputacja

Napisano

Nanotechnologia w produkcji żywności - kierunki rozwoju, zagrożenie i regulacje prawne.

 

[...]

 

1. Wprowadzenie

 

Pojęcie „nanotechnologia” oznacza wszystkie metody i techniki prowadzące do otrzymania materiałów, elementów, urządzeń w których przynajmniej jeden z kontrolowanych wymiarów jest w skali nano, czyli 1-100 nm [1]. Jeden nanometr stanowi jednomilionową część milimetra. Przedrostek nano - pochodzi od greckiego słowa nanos, co oznacza karzeł [2]. Nanotechnologia jest określeniem, które pojawiło się na początku minionej dekady i wiąże się z opanowaniem technologii manipulowania i przekształcania materii w skali pojedynczych atomów. Biorąc pod uwagę fakt, iż na odcinku 1 nanometra można zmieścić ok. 10 atomów, zdolność do przekształcania materii w tej skali jest zdumiewająca, a jednak już możliwa [3].

 

Średnica ludzkiego włosa przekracza skalę „nano” tysiące razy, a średnica krwinki czerwonej setki razy, natomiast wielkości kwasu DNA, wirusa grypy i atomów krzemu zbliżają się do zakresów „nano” [4,5]. Nanotechnologia wychodzi z zacisza laboratoriów i zdobywa kolejne dziedziny życia i przemysłu, także przemysłu spożywczego. Wytwarzanie żywności to złożony proces biologiczny, rządzący się zasadami biologii, chemii i biochemii, dlatego też odkrycia na polu nanotechnologii wpływają w różny sposób na przemysł spożywczy [1]. Nanotechnologia w produkcji żywności to bardzo szerokie pojęcie obejmujące swym zasięgiem etapy zastosowania nanotechnologii bądź nanocząsteczek do uprawy, produkcji, przetwórstwa czy pakowania żywności, aż po wytwarzanie nowych materiałów funkcjonalnych, obróbkę żywności i kontrolę jej przechowywania [1].

 

 

2. Wytwarzanie i rodzaje nanocząstek i nanomateriałów w technologii żywności

 

Głównym celem stosowania technologii w wymiarach nano jest dążenie do poprawy tekstury produktów oraz wprowadzanie składników funkcjonalnych [1,2,4]. Do uzyskania struktur określanych mianem nanocząstek można stosować metody fizykochemiczne (rozdrabnianie mechaniczne, odparowanie rozpuszczalnika, odsalanie, elektronatryskiwanie, nanowytrącanie, spontaniczną emulsyfikację) oraz metody biologiczne np. z wykorzystaniem wirusów, bakterii, grzybów pleśniowych, roślin [2,6,7]. Jednym z powszechnie stosowanych procesów w syntezie nanomateriałów na skalę masową jest wysokoenergetyczne mielenie.

 

Proces ten polega na rozdrabnianiu materiału pomiędzy dwoma obracającymi się żarnami, wykonanymi ze stali bądź węglika wolframu [8]. Próbka bez dostępu powietrza poddawana jest w młynie cyklicznym odkształceniom, co powoduje zmniejszanie się rozmiarów ziarna i tworzenie nowych granic ziaren w cząstkach proszku. Generalnie, w procesie wytwarzania nanomateriałów wykorzystuje się dwie techniki: metodę top-down, polegającą na redukcji wymiarów cząstek lub bottom-up, polegającą na budowaniu nowych struktur opartych na istniejących nanocząstkach. W zależności od tego, jakie właściwości ma mieć końcowy produkt, budulcem nanostruktur w metodzie bottom-up mogą być atomy, molekuły czy nanocząstki. Otrzymanie materiału o pożądanych właściwościach możliwe jest poprzez zmianę wielkości budulca, kontrolowanie cech jego powierzchni i wnętrza, a także poprzez narzucanie konkretnych warunków łączenia się nanoczasteczek w nanomateriał [8]. Procesy typu bottom-up syntezy nanostruktur dzieli się na dwie grupy: syntezy chemicznej w fazie gazowej, ciekłej lub stałej oraz ściśle kontrolowanego osadzania i wzrostu materiałów. Synteza polega na zapewnieniu ciągłego kontaktu stałych reagentów, poprzez ich mieszanie lub kruszenie przy równoczesnym podgrzewaniu układu, co ma na celu ułatwienie dyfuzji atomów. Generalnie, otrzymanie nanomateriałów za pomocą syntezy w ciele stałym jest trudne.

 

Dyfuzja w fazie gazowej i ciekłej jest o wiele rzędów wielkości szybsza, niż w ciele stałym. Aby spowolnić szybkość rozrostu ziaren, co umożliwi otrzymanie nanomateriałów, procesy syntezy w tych fazach przeprowadza się w o wiele niższych temperaturach [8]. Olbrzymią zaletą stosowania nanocząstek i nanomateriałów jest uzyskanie większej powierzchni zewnętrznej, tym samym zwiększenie absorpcji wody, poprawę uwalniania substancji aromatycznych, zwiększenie biodostępności i przyspieszenie procesów katalitycznych. Jednocześnie większa homogenność cząsteczek zapewnia lepszą jakość produktów i ich cech funkcjonalnych. Dla przykładu stosując nanomielenie można otrzymać mąkę o wysokiej zdolności wiązania wody [2].

 

Wobec wielu zagrożeń zdrowia, także ze strony środowiska, zwraca się uwagę na rolę jaką odgrywa prawidłowe odżywianie w prewencji różnych chorób. Zastosowanie nanotechnologii w przetwórstwie żywności pozwala na otrzymanie produktów wzbogaconych w różne substancje, które są niezbędne do zachowania zdrowia. W ten sposób powstaje żywność funkcjonalna tj. taka, do której celowo wprowadzane są substancje funkcjonalne, dzięki czemu staje się ona codziennym źródłem dodatkowych np. witamin, antyoksydantów, kwasów tłuszczowych i innych związków, bądź też jest lepiej chroniona przed szkodliwymi czynnikami środowiska, ze względu na obecność związków zapewniających dłuższą trwałość i odporność na organizmy chorobotwórcze [1,9]. Wprowadzane do żywności substancje rzadko stosowane są w czystej postaci. Zazwyczaj osadza się je na nośnikach, które nie tylko umożliwiają ich transport do konkretnego miejsca działania, ale zabezpieczają przed rozkładem i warunkują odpowiedni stopień uwalniania [1].

 

Owe nośniki są podstawowym czynnikiem limitującym skuteczność stosowania składników funkcjonalnych w produktach spożywczych. Powinny być kompatybilne z właściwościami produktu (smakiem, teksturą, okresem trwałości), biodegradowalne i łatwe do zastosowania [1]. Nanorozproszenia typu nanokapsułki, micele, pęcherzyki bimolekularne tzw. liposomy, emulsje, mikrosfery oraz matryce biopolimerowe okazują się być dobrym rozwiązaniem w kwestii dostarczania różnych składników do żywności [1,2]. Konkretnymi przykładami mogą być: wprowadzanie olejków eterycznych do aromatyzowanych napojów gazowanych w postaci miceli; kapsułkowanie alfa-tokoferolu, aby ograniczyć utlenianie lipidów w oleju rybnym; kapsułkowanie liposomami glikoprotein - laktoferyny i nizyny, wydłużające trwałość produktów mleczarskich; kapsułkowanie antyoksydantów dodawanych do mielonego mięsa, w celu zapobiegania oksydacji lipidów [1,2,10].

 

Ciekawą formą są wymienione wcześniej mikrosfery (Ryc. 1). Podstawą ich budowy jest składnik wrażliwy na wilgoć lub pH, który w odpowiednich warunkach środowiska uwalnia swoją zawartość. Wewnątrz tej struktury znajdują się hydrofobowe, stałe nanosfery zwierające m. in. substancje aromatyczne i czynniki chłodzące, które są uwalniane na drodze dyfuzji molekularnej w określonym czasie [2]. Stosuje się je aby stopniowo uwalniać składniki z wielofunkcyjnych systemów, poprzez umieszczenie jednego ze składników w mikrosferze, a drugiego w nanosferze. Przykładem mogą tu być mikrokapsułki z kwasem foliowym i żelazem, a także kapsułki uwalniające kolejne zapachy. Takie nanosystemy wprowadzane są w celu poprawy cech sensorycznych do produktów spożywczych takich jak pieczywo, niektóre produkty mięsne, mieszanki przypraw, wyroby cukiernicze, mieszanki deserowe, napoje w proszku [2].

 

image002.gif

Ryc. 1. Budowa mikrosfery. Proces uwalniania substancji czynnych z mikrosfery [11]

(reprodukcja za zgodą autorów: http://www.foodtech-...cation-nano.htm).

 

 

W procesach przetwórstwa żywności wykorzystuje się również stabilne termodynamicznie w szerokim zakresie temperatur nanoemulsje, otrzymywane przy użyciu mikrofluidyzatorów czy wysokociśnieniowych homogenizatorów [1,2].

 

Mianem nanoemulsji pojedynczych określa się układ, w którym stopień rozdrobnienia fazy wewnętrznej wynosi mniej niż 100-500 nm, jest więc co najmniej o jeden rząd wielkości mniejszy niż w emulsjach tradycyjnych. Składają się one z fazy wewnętrznej utworzonej przez lipidowy rdzeń, następnie molekularnej warstwy środka powierzchniowo czynnego oraz zewnętrznej fazy wodnej.

 

Cechują się łatwością wprowadzania substancji biologicznie aktywnych, zarówno do kropelek fazy wewnętrznej, jak i do fazy rozpraszającej. Wprowadzenie składnika aktywnego do kropelek fazy rozproszonej umożliwia spowolnienie lub przyspieszenie procesu uwalniania tej substancji. Opracowano również nanoemulsje wielokrotne. Powstają one w wyniku rozproszenia kropel emulsji klasycznej w fazie rozpraszającej. Najpopularniejsze to emulsje wielokrotne typu woda/olej/woda (W/O/W) lub olej/woda/olej (O/W/O), przy czym składniki funkcjonalne mogą być zawarte w wewnętrznej fazie wodnej lub olejowej, jak również w zewnętrznej fazie wodnej. Można więc stworzyć jedną emulsję, która służyłaby jako przenośnik dla wielu składników i nie obserwuje się przy tym zjawisk destabilizacji układu – mętnienia czy sedymentacji. Produkt końcowy jest idealnie homogenny [2,10].

 

Nanoemulsje mają szerokie zastosowanie w medycynie w preparatach do żywienia pozajelitowego oraz w przemyśle spożywczym przy produkcji wyrobów niskotłuszczowych, np. śmietana o małym stężeniu kuleczek tłuszczowych posiada teksturę śmietany kremówki, a czekolada i lody wydają się w smaku bardziej kaloryczne [2]. Innym przykładem szeroko stosowanej nanocząstki pochodnej biopolimerów jest polikwas mlekowy (PLA). Jest on wykorzystywany jako nośnik leków, szczepionek oraz białek. Główną zaletą jest jego zdolność do biodegradacji, co zostało wykorzystane przy tworzeniu torebek biodegradowalnych. Jednak krótki czas eliminacji z krwi oraz tendencja do kumulacji w wątrobie i nerkach są głównymi ograniczeniami w zastosowaniu tej nanocząstki [12].

 

Poniżej przedstawiono przykłady wykorzystywanych obecnie zastosowań lub potencjalnie ciekawych aplikacji nanotechnologii w codziennym żywieniu [2,13-16]:

 

•           W Australii do jednego z najbardziej popularnych rodzajów białego pieczywa dodaje się nanokapsułki zawierających kwasy omega 3, wzbogacając codzienną dietę w ten niezbędny składnik. Zastosowanie kapsułek wypełnionych olejem z tuńczyka zapewnia odpowiednią dzienną ich podaż, a dzięki kapsułkowaniu chleb nie ma rybnego posmaku.

 

•           Na skalę przemysłową uzyskiwany jest barwnik – likopen, o średnicy cząstek w zakresie 200-400 nm. Technologia jego otrzymywania jest o wiele tańsza, niż ekstrakcja z tkanek roślinnych.

 

Prowadzone są także badania nad nowymi zastosowaniami, jak:

 

•           Nowa sól kuchenna – stwierdzono [17], że jedynie 20% soli znajdującej się w chipsach jest odpowiedzialne za odczuwanie smaku słonego, bowiem tylko ta ilość ma szansę rozpuścić się na języku, zanim przekąska zostanie pogryziona i połknięta. Należy więc zastosować nanotechnologię do stworzenia kryształów NaCl szybciej się rozpuszczających i tym samym spowodować zastosowanie mniejszej ilości soli przy równoczesnym osiągnięciu jednakowo intensywnego smaku. Szacuje się, że możliwe będzie obniżenie zawartości soli w chipsach nawet o 25%.

 

•           Wzmacniacze słodyczy – testowane są substancje zwiększające intensywność słodkiego smaku fruktozy, sukralozy (sztucznego słodzika o zerowej kaloryczności) oraz sacharozy. Badacze twierdzą, że możliwe będzie zwiększenie odczuwania tego smaku o 50% [18].

•           Inhibitory goryczy. Smak gorzki jest istotnym problemem producentów żywności i leków. Konsumenci i pacjenci nie lubią goryczy i często utożsamiają go z żywnością o nieodpowiedniej jakości. Zaprojektowano więc substancję (GIV3727) blokującą receptory odpowiedzialne za odczuwanie gorzkiego smaku jaki mają popularne słodziki, np. acesulfam K [19].

 

•           Substytuty tłuszczu. Przykładem może być preparat, składający się w 9% z tłuszczu roślinnego, w 29% ze skrobi kukurydzianej i w 62% z wody [20]. Składniki te wymieszane są w taki sposób, że emulsja jest stabilizowana przez skrobiowe mikrokapsułki i przybiera formę płynu, żelu lub proszku. Producent deklaruje, że nowy preparat może znaleźć zastosowanie w potrawach mięsnych (nadaje soczystość), w zupach, a także deserach. Zastosowanie nanotechnologii umożliwia więc powstanie żywności mniej kalorycznej, a jednocześnie trwałej, o dobrym smaku i konsystencji.

 

•           Nanomajonez. Technologia otrzymywania „nanomajonezu” została już opracowana w teorii, ale nadal nie jest sprawdzona w praktyce. Proces tworzenia tego produktu polegałby na wypełnieniu mikrokropelek tłuszczu nanokropelkami wody [4].

 

 

3. Nanotechnologia a opakowania żywności

 

Żywność, zarówno przetworzona, przeznaczona do bezpośredniego spożycia, jak i zakupiona w stanie tzw. surowym, musi być w odpowiedni sposób opakowana. Producenci żywności wiążą wielkie nadzieje z wprowadzeniem osiągnięć nanotechnologicznych na etapie produkcji materiałów opakowaniowych, jak i samych opakowań. Do materiałów zalicza się:  tzw. nanotaggant czyli nanocząstki wielowarstwowego, kolorowego plastiku, które są dodawane do opakowań w celu ustalenia źródła pochodzenia a także producenta oraz węglowe nanowłókna wykorzystywane w produkcji wzbogacanych tworzyw plastikowych o małej masie, większej wytrzymałości i niskich kosztach produkcji [2].

 

Przykładem zaś samych opakowań w skali nano mogą być nanolaminaty. Są to cienkie, jadalne, wielowarstwowe filmy o grubości rzędu 1-100 nm, których funkcją jest ochrona żywności przed wilgocią, tłuszczami i gazami. Składają się z dwóch lub więcej powłok materiału, połączonych ze sobą w sposób chemiczny lub fizyczny. Właściwości nanolaminatów zależą przede wszystkim od rodzaju substancji służącej do ich utworzenia. Nanolamiaty mogą wpływać na poprawę cech teksturalnych żywności, mogą być nośnikami barwników, aromatów, antyoksydantów, składników żywieniowych i bakteriobójczych. Powłoki jadalne są obecnie stosowane na owocach, warzywach, mięsie, czekoladzie, słodyczach czy pieczywie [2].

 

Z kolei tzw. opakowania inteligentne, reagujące na zmiany najbliższego otoczenia, mogą poprawić bezpieczeństwo i jakość produktów. Opakowanie inteligentne nazywane jest opakowaniem indykatorowym, bo zawiera składniki będące wskaźnikami lub czujnikami, które kontrolują warunki w zapakowanej żywności i informują konsumenta o stanie jakościowym produktu. Przydatność do spożycia określają wskaźniki bazujące na zmianie barwy, temperatury, wilgotności czy poziomu tlenu [2]. Innym rodzajem opakowań są „aktywne” opakowania, które mają zdolność interakcji z produktem, np. zawierają pochłaniacze tlenu, mogące redukować jego ilość do optymalnego poziomu, przy jednoczesnym wytwarzaniu CO2.

 

Ponadto zapobiegają wgnieceniom opakowania. Opakowania aktywne efektywnie wydłużają trwałość żywności [2]. Konkretnymi przykładami zastosowań praktycznych są opakowania z kapsułkowanymi substancjami bakteriobójczymi w plastikowych opakowaniach świeżego mięsa, opakowania z tuszem zawierającym nanocząstki wrażliwe na światło, opakowania z nanokodami kreskowymi czy nanozabezpieczenia przed różnego typu zafałszowaniem oryginalnego produktu [2].

 

 

4. Nanotechnologia a kontrola jakości i bezpieczeństwa żywności

 

Monitorowanie żywności w skali nano to precyzyjne wykrywanie obecności pozostałości związków szkodliwych: metali ciężkich, antybiotyków, toksyn, gazów trujących oraz drobnoustrojów patogennych. Zastosowanie nanotechnologii umożliwia szybką identyfikację różnych wariantów GMO, zafałszowań żywności obcym białkiem, badanie ekspresji genów i sekwencjonowanie określonego DNA. Skala „nano” w zabezpieczeniach żywności umożliwia właściwie śledzenie historii danego składnika od momentu jego zebrania [3].

 

Taką kontrolę można realizować poprzez zastosowanie:

Nanobiosensorów - czyli sensorów umożliwiających identyfikację substancji chemicznych i biologicznych, na podstawie wiązania nawet pojedynczej cząsteczki. Stosowane są one do szybkiej identyfikacji mikroflory patogennej w żywności, wodzie pitnej oraz otaczającym środowisku (naturalnym i produkcyjnym). W jednym nanosensorze można umieścić tysiące nanocząsteczek, które mają zdolność rozpoznawania RNA patogenów. Umożliwiają także monitorowanie przebiegu procesów technologicznych (jak ubytek substratu, kinetyka procesu).

 

Nanomateriałów - są to m.in. nanorurki znajdujące zastosowanie jako chipy oraz nanomembrany o nanoporach i bioselektywnej powierzchni (używane jako nanofiltry do selektywnego wyróżniania molekuł na podstawie kształtu oraz rozmiaru w celu usuwania toksyn).

 

Nanobiorobotów – czyli zaprogramowanych struktur lub kompozycji elektronicznie wykonanych w nanoskali z nowych typów materiałów (np. włókien węglowych lub biopolimerów w formie nanomembran) z udziałem mikroskopu atomowego. Wykorzystuje się tu m.in. technikę lab-on-a-chip (są to miniaturowe urządzenia, których zadaniem jest przeprowadzenie standardowych procedur i reakcji laboratoryjnych, ich podstawę stanowią mikrochipy). Dzięki nim można sterować i kontrolować procesy wewnątrzkomórkowe, dokonać sekwencjonowania genów, hybrydyzacji (genetyczna rekombinacja lub identyfikacja) na biochipie czy elektronicznie identyfikować toksyczne związki lub patogeny, a następnie sygnalizować  potencjalne zagrożenie dla zdrowia.

 

Nanobioreceptorów - zawierających znakowane cDNA do identyfikacji obcego DNA lub kompatybilne DNA do sekwencjonowania genów [3].

 

 

5. Kierunki rozwoju dla nanożywności

 

Rozwój nanotechnologii w przemyśle spożywczym jest ściśle zależny od rozwoju wielu dziedzin naukowych, które łączy wspólny cel: miniaturyzacja, a więc możliwość zaprojektowania złożonych funkcjonalnie struktur w skali nano. Nowe metody badawcze oraz specjalistyczny sprzęt (mikroskop skaningowy tunelowy, mikroskop sił atomowych) umożliwiają osiągnięcie tego celu [2]. Można wyróżnić dwa główne kierunki rozwoju nanotechnologii w produkcji żywności. Po pierwsze, jest to wytwarzanie nowych produktów, czyli:

 

- „interaktywnej” żywności o odpowiednich cechach sensorycznych dostosowanych do oczekiwań konsumenta,

 

- „spersonalizowanej” żywności, czyli indywidualne podejście do żywności, poprzez próby wyznaczania zależności pomiędzy genetyką, dietą a zdrowiem konkretnej osoby,

 

- „inteligentnej żywności”, której zadaniem będzie dostarczanie do organizmu tylko tych składników, które występują w ilości deficytowej lub są niezbędne do określonych procesów, a których uwalnianie będzie zależne od obecności odpowiednich markerów w organizmie. „Inteligentna” żywność, miałaby samodzielnie dostosowywać się do potrzeb żywieniowych konsumenta oraz chronić go np. przed składnikami, na które jest uczulony [1–3].

 

Po drugie, jest to wytwarzanie produktów bezpiecznych pod względem zdrowotnym, poprzez poszukiwanie nowych technik kontroli, czy nowych opakowań, zapewniających odpowiednią ochronę żywności [2].

 

Podsumowując, korzyści z zastosowania nanotechnologii w przetwórstwie żywności w niedalekiej przyszłości są ogromne, wiążą się bowiem z  udoskonalaniem przetwórstwa żywności, sposobu jej pakowania, bezpieczeństwa, polepszeniem cech organoleptycznych i wartości odżywczej, intensyfikacją produkcji i opłacalności i wreszcie stworzeniem żywności funkcjonalnej dostarczającej codziennie odpowiednich składników, a nawet leków.

 

 

6. Stan prawny

 

Jak w przypadku każdej nowej techologii, niezmiernie istotną sprawą są jasne regulacje prawne. Na chwilę obecną brakuje precyzyjnych przepisów dotyczących nanomateriałów. W rozporządzeniu REACH z 2006 roku, regulującym wprowadzanie na rynek UE substancji chemicznych, znalazły się niedoskonałości w podejściu do nanomateriałów dotyczące m. in. identyfikacji i klasyfikacji substancji [8,21].

 

Ponadto, brakuje ogólnej metody właściwej oceny zagrożeń. Nie przygotowano również przepisów dotyczących odpadów, czy też dopuszczalnych wartości emisji ze spalania (specjalne kryteria powinny być wymagane np. dla nanorurek węglowych, trwałych w bardzo wysokich temperaturach) [8,22].

 

Przykładowo, według Rozporządzenia REACH z 2006 r. [21] ocena narażenia jest obowiązkowa dla substancji produkowanych w ilości powyżej 10 ton rocznie oraz jeśli stwierdzono, że odpowiadają one kryteriom klasyfikacji jako niebezpieczne. Niestety, dziś nie można określić ryzyka związanego z nanomateriałami. Ponadto, biorąc pod uwagę ich rozmiary, nanomateriały prawdopodobnie nie przekroczą progów wymaganego w rozporządzeniu tonażu. Kolejnym przykładem jest przepis mówiący o tym, że wymaga się powiadamiania o substancjach w wyrobach jeśli „są to substancje wzbudzające szczególnie duże obawy, znajdujące się na liście substancji kwalifikujących się jako niebezpieczne, występują w stężeniach powyżej 0,1% wagowych w wyrobie, oraz całkowitej ilości stanowiącej ponad jedną tonę w tych wyrobach na producenta rocznie.”

 

Obecnie żaden nanomateriał nie kwalifikuje się na tak sformułowaną listę substancji niebezpiecznych. W tym przypadku również próg stężenia najprawdopodobniej nie zostanie przekroczony. Wyroby nie będą więc musiały być w ogóle zgłaszane [8]. Istotne jest, żeby wraz z rozwojem nanotechnologii precyzyjnie zredagować odpowiednie przepisy prawne, aby uniknąć nadużyć, które mogłyby skutkować zagrożeniem dla ludzi. W pierwszej kolejności należy uwzględnić fakt stosowania tych technologii w ustawach dotyczących żywności (szeroko rozumianej, czyli środków spożywczych, substancji dodatkowych do żywności, produktów paszowych wyprodukowanych z organizmów zmodyfikowanych genetycznie), następnie zagadnienia dotyczące ochrony pracowników, jakości powietrza, wody, odczynników chemicznych i odpadów.

 

W związku z brakiem precyzyjnych przepisów prawnych za niewątpliwymi zaletami stosowania nanotechnologii mogą kryć się również olbrzymie zagrożenia i problemy. Polegają one przede wszystkim na nieznajomości  właściwości nanocząsteczek wynikającej z ich niedużych wymiarów. Może to spowodować szereg problemów związanych z ich produkcją, złomowaniem, obchodzeniem się z nimi, przechowywaniem czy transportem [8]. Przewidywanie właściwości tych cząsteczek jest trudne, gdyż wymaga znajomości zarówno fizyki klasycznej jak i mechaniki kwantowej.

 

Bardzo istotnym potencjalnym zagrożeniem jest brak wystarczających danych toksykologicznych i ekotoksykologicznych na temat wpływu nanocząsteczek na organizm ludzki oraz zwierzęcy, a także środowisko naturalne. Prowadzone badania in vivo i in vitro są badaniami krótkoterminowymi, podczas gdy wpływ nanocząsteczek należałoby szacować długoterminowo [5,22,23]. Ponadto, w chwili obecnej nie wiadomo, jakie cechy nanocząsteczek mogą pozwolić na zakwalifikowanie ich jako zagrażających zdrowiu. Nie poznano mechanizmów oddziaływania nanocząsteczek na organizm ludzki. Nie wiadomo czy oceniając „nanoryzyko”, przede wszystkim wziąć pod uwagę skład chemiczny, wielkość powierzchni, reaktywność, liczbę cząstek, a może ich strukturę [8]. Także nieznany jest sposób bezpiecznego utylizowania odpadów zawierających nanomateriały.

 

Należałoby zacząć od modyfikacji w przepisach prawnych, polegającej na opracowaniu odpowiedniego wykazu „nanoodpadów”. Następnie należy unowocześnić kryteria przyjmowania odpadów na składowiska, jak również kryteria dopuszczalnych wartości emisji, dotyczących powietrza i wody, uzupełniając pomiary oparte na masie modelami pomiarowymi opartymi na wielkości powierzchni lub liczbie cząstek, tak aby lepiej uwzględnić właściwości nanomateriałów [8,24,25].

 

 

7. Podsumowanie

 

Niezwykłe możliwości i postęp w dziedzinie nanotechnologii sprawiają, że coraz więcej nanocząsteczek dostaje się do środowiska i organizmu człowieka. Obowiązujące aktualnie przepisy krajów Wspólnoty Europejskiej właściwie nie obejmują nanomateriałów, a dla większości tych produktów nie można zastosować sprawdzonych już metod wykorzystywanych w ocenie toksyczności czy ekotoksyczności i tym samym ocenić ryzyko zagrożenia. W związku z tym pojawiają się też bardziej radykalne opinie, że dalszy rozwój nanotechnologii powinien ulec zahamowaniu do czasu dokonania właściwej oceny oddziaływania nanomateriałów i nanotechnologii na zdrowie ludzkie i środowisko naturalne. Wydaje się więc, że oprócz promowania nanotechnologii istnieje konieczność prowadzenia konsultacji społecznych na temat jej przyszłości.

 

 

8. Wykaz skrótów

 

DNA          – kwas deoksyrybonukleinowy

W/O/W     – emulsje wielokrotne: woda/olej/woda

O/W/O      – emulsje wielokrotne: olej/woda/olej

PLA           – kwas L-polimlekowy

GMO         – Genetically Modified Organism

WE            – Wspólnota Europejska

REACH       - Registration, Evaluation and Authorisation of Chemicals

                 (rozporządzenie Parlamentu Europejskiego i Rady (WE)

EWG          – Europejska Wspólnota Gospodarcza

 

9. Bibliografia

1.      Ozimek L., Pospiech E., Narine S.:  Nanotechnologies in food and meat processing. Acta Sci. Pol., Technol. Aliment. 2010; 9[4]: 401-412.

2.      Jakubczyk E.:  Nanotechnologia w technologii żywności. Przemysł Spożywczy, 2007; 4: 16-22.

3.      Kurzydłowski K.J.:  Nanotechnologia jako priorytet polityki naukowo-badawczej UE i Polski. Wydział Inżynierii Materiałowej Politechniki Warszawskiej MATERIALS DESIGN DIVISION (http://ntfp2020.pb.edu.)

4.      http://www.lauf.pl/nano.htm

5.      Dietl T.: Nanotechnologie przyszłości.,  Polska Akademia Umiejętności, Prace Komisji Za-grożeń Cywilizacyjnych, 2006; 7: 15-28. (http://www.ifpan.edu.../Dietl_PAU_KOM_ ZAGR_06.pdf)

6.      Kanchana A., Agarwal I., Sunkar S., Nellore J.,  Namasivayam K.: Biogenic silver nanoparticles from spinacia oleracea and lactuca sativa and their potential antimicrobial activity. Digest Journal of Nanomaterials and Biostructures. 2011; 6 [4]: 1741-1750.

7.      Maliszewska I.H., Puzio M.: Extracellular biosynthesis and antimicrobial activity of silver nanoparticles. Acta Phys. Polonica A. 2009; 116: 160-162.

8.      Kelsall R.W, Hamley I.W, Geoghegan M.: Nanotechnologie, Wydawnictwo Naukowe PWN, Warszawa 2008.

9.      Pacholczyk A., Terzyk A.P, Wiśniewski M.: Perspektywy zastosowania nowych nanomateriałów węglowych w kontrolowanym uwalnianiu leków. Wiadomości chemiczne. 2010; 64: (1-2): 23-44.

10.     Zboińska E., Zielińska K., Piechowska J., Wilk K.: Antybakteryjna aktywność nizyny enkapsułkowanej w mikroemulsjach typu woda-w-oleju. IV Krajowa Konferencja Nanotech-nologii NANO 2010.

11.     http://www.computesc...stries-2996.php

12.     Riley T., Govender T., Stolnik S., Xiong C.D., Garnett M.C., Illum L., Davis S.S.: Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids and Surfaces B: Biointerfaces. 1999; 16[1]: 147-159.

13.     http://www.focus.pl/...nano-na-jezyku/

14.     Nowak M.: Rewolucyjna nanotechnologia. Ekopartner, 2008; 2(196): 30-31.

15.     Smoderek K.: Sposoby wykorzystywania żywności w biotechnologii, nanotechnologii oraz leczeniu. Korzyści i zagrożenia. Materiały Czytelni On-line / Baza Artykułów, Centrum Ekologii Człowieka i Bioetyki w Warszawie, 2009. http://www.cecib.uksw.edu.pl.

16.     Snopczyński T., Góralczyk K., Czaja K., Struciński P., Hernik A., Korcz W., Ludwicki J.K.: Nanotechnologia - możliwości i zagrożenia. Roczn. PZH, 2009; 2 (60):101-111.

17.     http://www.pepsico.com

18.     http://www.senomyx.com

19.     http://www.redpointbio.com

20.     http://www.nutrigrasusa.com

21.     Rozporządzenie (WE) NR 1907/2006 Parlamentu Europejskiego i Rady z dnia 18 grudnia 2006 r. w sprawie rejestracji, oceny, udzielania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów (REACH) i utworzenia Europejskiej Agencji Chemikaliów, zmieniające dyrektywę 1999/45/WE oraz uchylające rozporządzenie Rady (EWG) nr 793/93 i rozporządzenie Komisji (WE) nr 1488/94, jak również dyrektywę Rady 76/769/EWG i dyrektywy Komisji 91/155/EWG, 93/67/EWG, 93/105/WE i 2000/21/WE. http://eur-lex.europ...rv.do?uri=OJ:L: 2007:136:0003:0280:pl:PDF

22.     Maliszewska – Mazur M.: Nanotechnologia – nowe wyzwania, nowe możliwości i nowe problemy. Ochrona Środowiska  i Zasobów Naturalnych, 2010; 45: 153-161.

23.     El-Temsah Y.S.. Joner E.J.: Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension  and soil. Environ. Toxi-col. 2012; 27[1]: 42-49.

24.     Nanonauka i nanotechnologia. Plan działań dla Europy na lata 2005-2009. Drugie sprawozdanie z realizacji za lata 2007-2009 KOM (2009) (INI). http://eur-lex.europa.eu/LexUriServ/ LexUriServ.do?uri=COM:2009:0607:FIN:PL:PDF

25.     Aspekty regulacyjne nanomateriałów: Rezolucja Parlamentu Europejskiego, 2008/2208(INI) http://eurlex.europa.eu/

LexUriServ/LexUriServ.do?uri=OJ:C:2010:184E:0082:0089:PL:PDF

 

BIULETYN Wydziału Farmaceutycznego Warszawskiego Uniwersytetu Medycznego

Małgorzata Idzikowska1, Marta Janczura1, Tomasz Lepionka1, Michał Madej1, Edyta Mościcka1, Justyna Pyzik1, Paulina Siwek1, Weronika Szubierajska1, Dorota Skrajnowska2*, Andrzej Tokarz2

1 Studenckie Koło Naukowe „Bromatos” przy Katedrze i Zakładzie Bromatologii WUM

2 Katedra i Zakład Bromatologii, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny

Otrzymany 12.06.2012, zaakceptowany 1.07.2012, zamieszczony 3.09.2012

źródło


  • 1



#24

Zaciekawiony.
  • Postów: 8137
  • Tematów: 85
  • Płeć:Mężczyzna
  • Artykułów: 4
Reputacja znakomita
Reputacja

Napisano

Dobry artykuł. Kilka lat temu byłem na wykładzie dr. Mirosławy Ossowskiej, która mówiła o tym samym. Wspominała że formalnie za produkt nanotechnologiczny uważa się taki, którego cząstki są rozmiarów rzędu 100 nm, dlatego 500 nm cząstki pigmentów jeszcze nie są za nanotechnologię uważane i nie ma problemów prawnych. Ale już na przykład antybakteryjne nanosrebro może być użyte tylko w opakowaniach.


  • 0




 

Użytkownicy przeglądający ten temat: 0

0 użytkowników, 0 gości oraz 0 użytkowników anonimowych